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Abstract— In this paper, we present an adaptive and dis-
tributed approach to spectrum allocation in mobile ad-hoc
networks. We propose a local bargaining approach where users
affected by the mobility event self-organize into bargaining
groups and adapt their spectrum assignment to approximate a
new optimal assignment. The number of computations required
to adapt to topology changes can be significantly reduced com-
pared to that of the conventional topology-based optimizations
that ignore the prior assignment. In particular, we propose a
Fairness Bargaining with Feed Poverty to improve fairness in
spectrum assignment and derive a theoretical lower bound on
the minimum assignment each user can get from bargaining for
certain network configurations. Such bound can be utilized to
guide the bargaining process. We also show that the difference
between the proposed bargaining approach and the true optimal
approach is upper-bounded. Experimental results demonstrate
that the proposed bargaining approach provides similar perfor-
mance as the topology-based optimization but with more than
50% of reduction in complexity.

I. INTRODUCTION

Wireless devices are becoming ubiquitous, placing addi-
tional stress on the fixed radio spectrum available to all
access technologies. To eliminate interference between dif-
ferent wireless technologies, current policies allocate a fixed
spectrum slice to each wireless technology. This static as-
signment prevents devices from efficiently utilizing allocated
spectrum, resulting in spectrum holes (no devices in area)
and very poor utilization [16]. These results further motivate
the Open Spectrum [3] approach to spectrum access. Open
Spectrum allows unlicensed (secondary) users to coexist with
legacy (primary) spectrum holders, thereby “creating” new
capacity and commercial value from existing spectrum ranges.
Secondary users opportunistically utilize unused licensed spec-
trum on a non-interfering or leasing basis based on agreements
and constraints imposed by primary users.

Open spectrum focuses on controlling the behavior of
secondary users while keeping the system transparent to pri-
maries. While maximizing spectrum utilization is the primary
goal of dynamic spectrum systems, a good allocation scheme
is also needed to provide fairness across users. We hereby use
user to represent secondary user. A user seizing spectrum with-
out coordinating with others can cause harmful interference
with its surrounding neighbors, and thus reducing available
spectrum. Given a fixed topology, existing approaches can
efficiently allocate spectrum to users by reducing the problem
to a variant of the graph coloring problem [23], [18]. A conflict
free spectrum assignment is obtained for the given topology.

In general, a topology-optimized allocation algorithm begins
with no prior information, and assigns each user an optimal
assignment. In a mobile network, however, users are constantly
moving and the network topology changes. Using this global
optimization approach, the network needs to completely re-
compute spectrum assignments for all users after each change,
resulting in high computational and communication overhead.
This costly operation needs to be repeated frequently to
maintain spectrum utilization and fairness.

In this work, we consider a distributed approach to spectrum
allocation that starts from the previous spectrum assignment,
and performs a limited number of computations to adapt to
recent topology changes. We propose a local bargaining ap-
proach where users affected by the mobility event self-organize
into bargaining groups and adapt their spectrum assignment to
approximate a new optimal conflict free assignment. The key
contributions of this paper are three-fold:

Local Bargaining Strategy. We propose a local bargaining
framework, and two bargaining strategies: one-to-one fairness
bargaining and feed poverty bargaining, to improve fairness
based system utility.

Bound of Local Bargaining Performance. We derive a
theoretical lower bound on the number of channels each
user can get from bargaining, referred to as Poverty Line.
The bound reflects the level of fairness enforced by the
proposed bargaining strategies, and can serve as a guidance for
bargaining. We also derive a upper bound on the performance
difference between the local bargaining and the global optimal
solution, referred to as price of anarchy.

Simulation of Efficiency and Complexity. We conduct ex-
tensive simulations to quantify the performance of local bar-
gaining. Results indicate the proposed bargaining performs
similarly to the graph-coloring solution[23], [18] but with
significantly reduced algorithm complexity. We also validate
the correctness of the poverty line and the effectiveness of
poverty guided bargaining.

The rest of the paper is organized as follows. We begin in
Section II by defining the spectrum allocation problem and the
system utility functions. Next, we propose a local bargaining
framework in Section III and develop specific strategies to
improve system fairness in Section IV. Next in Section V, we
conduct experiments to evaluate the performance of bargaining
strategy and validate the theoretical lower bound. We then
derive analytical results in terms of price of anarchy in
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Section VI. Finally, we summarize related work in Section VII,
discuss implications and future directions and conclude in
Section VIII.

II. BACKGROUND ON SPECTRUM ALLOCATION

The two key goals of a spectrum allocation algorithm are
spectrum utilization and fairness. Combinations of these two
goals form specific utility functions that can be customized
for different types of network applications. As background,
we describe in this section our previous work on efficient
and globally optimized spectrum allocation. We start with
the theoretical model used to represent the general allocation
problem, and two utility functions that maximize spectrum
utilization and fairness. We describe how to reduce the optimal
allocation problem to a variant of a graph multi-coloring
problem and describe the previous solution that optimize the
spectrum allocation for a given topology.

A. Problem Model and Utility Functions

We consider the case where the collection of available
spectrum ranges forms a spectrum pool, divided into non-
overlapping orthogonal channels. We assume a network of N
users indexed from 0 to N − 1 competing for M spectrum
channels indexed 0 to M −1. Each user can be a transmission
link or a broadcast access point. Users select communication
channels and adjust transmit power accordingly to avoid inter-
fering with primaries. The channel availability and throughput
for each user can be calculated based on the location and
channel usage of nearby primaries. The spectrum access
problem becomes a channel allocation problem, i.e. to obtain a
conflict free channel assignment for each user that maximizes
system utility. The key components of our model are:

- Channel availability L(n).
Γ = {lm,n|lm,n ∈ {0, 1}}M×N is a M by N binary matrix
representing the channel availability: lm,n = 1 if and only if
channel m is available at user n. In general, lm,n = 0 when
channel m is occupied by a primary user who conflicts with
user n, so that the transmissions of n on this channel will
interfere with the primary’s activity if they use channel m
concurrently. Let L(n) = {0 ≤ m ≤ M − 1|lm,n = 1} be the
set of channels available at n.

- Interference constraint C.
Let C = {cn,k|cn,k ∈ {0, 1}}N×N , a N by N matrix,
represents the interference constraints among users. If cn,k =
1, users n and k would interfere with each other if they use the
same channel. The interference constraint depends on the sig-
nal strength of transmissions and the distance between users. A
simple model of interference constraint is the binary geometry
metric, i.e. two transmissions conflict if they are within π
distance from each other. This provides an approximation to
the effects of interference in real wireless systems.

It should be noted that the interference constraint could also
depend on the frequency location of the channel (i.e. m),
since power and transmission regulations vary significantly
across frequencies. The work in [23], [18] considers the

channel-dependency and uses a M by N by N interference
matrix C. In this paper, for simplicity, we consider a channel-
independent interference constraint, assuming channels have
similar power and transmission regulations. It is straight-
forward to extend the proposed approaches to account for
channel-dependent or other interference conditions [4].

- User dependent channel throughput B.
Let B = {bm,n > 0}M×N describe the reward that a user gets
by successfully acquiring a spectrum band, i.e. bm,n represents
the maximum bandwidth/throughput that user n can acquire
through using spectrum band m (assuming no interference
from other neighbors). Let bm,n = 0 if lm,n = 0. So that
B represents the bandwidth weighted user available spectrum.

- Conflict free assignment A.
A = {am,n|am,n ∈ {0, 1}}M×N where am,n = 1 denotes
that spectrum band m is assigned to user n, otherwise 0. A
satisfies all the constraints defined by C, that is,

am,n + am,k ≤ 1, if cn,k = 1,∀ n, k < N,m < M.

Let ΛN,M denote the set of conflict free spectrum assignments
for a given set of N users and M spectrum bands.

- User throughput of a conflict free assignment.
Let TPA(n) represent the throughput that user n gets under
assignment A, i.e. TPA(n) =

∑M−1
m=0 am,n · bm,n.

Given this model, the goal of spectrum allocation is to
maximize network utilization, defined by U . We can define the
spectrum assignment problem by the following optimization
function:

A∗ = max
A∈ΛN,M

argmax U(A),

We can obtain utility functions for specific application types
using sophisticated subjective surveys. An alternative is to
design utility functions based on traffic patterns and fairness
inside the network. In this paper, we consider and address
fairness based system utility. Consistent with prior work[17],
[12], [21], we address fairness for single-hop flows since
they are the simplest format in wireless transmissions. We
postpone the discussion of routing related utility functions to
a future paper. Similar to [17], we define fairness in terms of
maximizing total logarithmic user throughput, refereed to as
proportional fairness. The utility can be expressed as

U(A) =
N−1∑
n=0

log TPA(n) =
N−1∑
n=0

log
M−1∑
m=0

am,n · bm,n. (1)

As a reference, another utility function is the total spec-
trum utilization in terms of total user throughput, U(A) =∑N−1

n=0 TPA(n). Maximizing utilization does not consider
fairness, and the resulting channel assignment is in general
unbalanced.

B. Color-Sensitive Graph Coloring

In [23], [18], it is shown that by mapping each channel into
a color, the channel assignment problem can be reduced to a
graph multi-coloring (GMC) problem.
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Definition 1: Given the channel assignment problem in
above, the system can be represented by a Conflict Graph
G = (V,E,B) where V is a set of vertices denoting the users
that share the spectrum, B represents the bandwidth weighted
available spectrum, mapping to the color list at each vertex,
and E is a set of undirected edges between vertices represent-
ing interference constraint between two vertices defined by C.
For any two distinct vertices u,v ∈ V , an edge between u and
v, is in E if and only if cu,v = 1.

Fig. 1 illustrates an example of GMC graph. There are 5
colors available. The numbers outside the brackets attached to
each node denote the colors assigned to that node, while the
numbers inside the brackets denote the available color list of
each node.

0,1,2
(0,1,2,3,4)

3,4
(2,3,4)

0,2
(0,2,3)

1
(0,1,3)

Fig. 1. An example of GMC graph

A GMS problem is to color each vertex using a number
of colors from its color list, and find the color assignment
that maximizes system utility. The coloring is constrained by
that if an edge exists between any two distinct vertices, they
can’t be colored with the same color. Most importantly, the
objective of coloring is to maximize system utility. This is
different from traditional graph color solutions that assign one
color per vertex. Notice that the solution to this graph coloring
problem is to maximize system utility for a given graph, i.e.
a given topology and channel availability. This characterizes
the optimal solution for a static environment.

The optimal coloring problem is known to be NP-hard [7].
Efficient algorithms to optimize spectrum allocation for a
given network topology exist. In [23], the authors presented
a set of sequential heuristic based approaches that produce
good coloring solutions. The algorithm starts from empty
color assignment and iteratively assign colors to vertices
to approximate the optimal assignment. In each stage, the
algorithm labels all the vertices with a non-empty color list
according to some policy-defined labeling. The algorithm
picks the vertex with the highest valued label and assigns the
color associated with the label to the vertex. The algorithm
then deletes the color from the vertex’s color list, and from the
color lists of the constrained neighbors. The color list and the
interference constraint of a vertex keep on changing as other
vertices are processed, and the labels of the colored vertex
and its neighbor vertices are modified according to the new
graph. The algorithm can be implemented using a centralized
controller who observes global topology and makes decisions,
or through a distributed algorithm where each vertex performs

a distributed voting process. Results in [18], [23] show that
the heuristic based algorithms perform similarly to the global
optimum (derived off-line for simple topologies), and the
centralized and distributed algorithms perform similarly.

III. LOCAL BARGAINING FRAMEWORK

The approach described in Section II globally optimizes
spectrum allocation for a given topology. In a mobile network
model, node movements lead to constant changes in network
topology. Using the existing approach, we can reapply the
spectrum allocation algorithm after each change in the conflict
graph. This approach assumes no prior allocation information,
and incurs high computation and communication overheads.
To reduce these overheads, we propose the use of an adaptive
and robust distributed algorithm that takes prior allocation into
account in new spectrum assignments.

An efficient dynamic allocation algorithm can run every
time user movement causes a change in the corresponding
network conflict graph. Therefore, an adaptive algorithm needs
to only compensate for small changes affecting a local network
region. The algorithm starts from a non-optimal spectrum
allocation, which can be constructed from the allocation prior
to the topology change. Consider a conflict graph with N
nodes (indexed from 0 to N − 1) and M channels (indexed
from 0 to M −1), where the optimized assignment is AM×N .
When a new node (indexed as N ) joins the network, the
assignment after introduction of the node becomes A′

M×(N+1)

where

A′
m,n =

{
Am,n : 0 ≤ n ≤ N − 1, 0 ≤ m < M

0 : n = N, 0 ≤ m < M

Or if a primary user i enters the network and wants to use
channel m0, the nodes within impact of primary i (denoted
by Nbr(i)) need to stop using channel m0 within a given
time. Hence, the assignment becomes A′

M×N such that

A′
m,n =

{
0 : m = m0 and n ∈ Nbr(i)

Am,n : otherwise

Assuming the spectrum allocation was near optimal be-
fore the topology change, local bargaining between affected
vertices can quickly optimize allocations for utilization and
fairness. During local bargaining, sets of neighboring vertices,
each of which form a connected component of the conflict
graph, self-organize into bargaining groups. Each group mod-
ifies spectrum assignment within the group to improve system
utility while ensuring that the change in spectrum assignment
does not require any change at other nodes outside the
group (due to interference constraints). Note that a node can
represent a transmission link or an access point. Bargaining
related to a transmission link is carried out by the transmitter or
receiver while bargaining related to an access point is carried
out by the access point.

A. Bargaining constraints

To perform bargaining, we must first determine the size and
membership of local bargain groups. Large groups increase
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the complexity of bargaining due to high synchronization and
communication costs. In addition, interactions might occur
between bargain groups if they share neighboring users. To
facilitate bargaining, we propose two constraints to regulate
the procedure and simplify the process.

Constraint 1: Limited Neighbor Bargaining.
While pair-wise bargaining is already a hard convex optimiza-
tion problem, bargaining within a large group implies even
higher computation and communication overheads. Coordinat-
ing around a central leader per group can greatly simplify
spectrum assignment. In this paper, we propose a simple
group formation where a node who wants to improve its
spectrum assignment broadcasts a bargaining request to its
k-hop neighbors, where k is the ratio of interference range
and transmission range. These neighbors are connected to the
node in the corresponding conflict graph. Those neighbors
whose are willing to participate reply to the sender and form
a bargaining group. Note that it is possible that two connected
neighbors in a conflict graph might not be able to communicate
directly with each other, i.e. when k > 1. The bargaining
information can be relayed by the nodes in between. These
relay nodes do not necessary participate in the bargaining
group. In this following, we will use node to present any vertex
in a conflict graph.

For each bargaining group, the requester becomes the group
coordinator and performs the bargaining computation. The
bargaining strategies can be divided into the following formats:

1.a) One-to-one bargaining- The node n1 who initiates the
bargaining can choose to bargain with only one neighboring
node n2 at a time. They exchange some channels to improve
system utility while complying with the conflict constraints
from the other neighbors. This is the simplest bargaining
process and the requester only needs approval from one of his
neighbors to perform the bargaining. When multiple neighbors
e.g. n2 and n3 acknowledge the bargaining request, n1 can
sequentially compute assignment assuming bargaining with n2

first, and then with n3. n1 broadcasts the assignment to both
n2 and n3. This expands the bargaining group to (n1, n2, n3)
without adding extra signalling overhead. However, this also
requires that n1 chooses a sequential bargaining order and
gets approval from all the group members on the order before
conducting bargaining. If one of neighbors disapproves the
request, n1 needs to perform another request. Hence, for sim-
plicity, we restrict this format to only one-to-one bargaining.
Fig. 2 illustrates an example of one-to-one bargaining.

1.b) One-buyer-multi-seller bargaining- A buyer node n1

purchases a set of channels M0, from its neighbors who are
currently using any channel in M0, such that to improve
system utility. In this case, the bargaining requires concurrent
approval from multiple neighbors. As we will show later, this
type of bargaining is necessary to eliminate user starvation.
Fig. 2 illustrates an example with one buyer and four sellers.

Constraint 2: Self-contained Group Bargaining
Once the bargaining groups are organized, the bargaining

One-buyer-
multi-seller 
bargaining

One-to-one 
bargainingIsolating groups to 

prevent conflict 
between groups

Fig. 2. An example of Bargaining Groups.

inside each group should not disturb the spectrum assignment
at nodes outside the group. That is, after the bargaining, the
modified channel assignment should not lead to any conflict
with nodes outside the group. This helps to maintain system
stability, so that a bargaining may not invoke a series of
reactions due to violations in interference constraints. More
importantly, this guarantees that if a bargaining improves the
utility in a local area, it also improves the system utility. Or
in other words, a local improvement will lead to a system
improvement. This constraint has two components.

2.a) Restricted Bargainable Channels- This restricts the set
of channels that are exchangeable between nodes inside each
bargaining group, such that when a node gets one channel
from its neighbor, the assignment does not conflict with its
neighbors outside the bargaining group.

2.b) Isolated Bargaining Group- This not only restricts each
node to participate in at most one bargaining group at any
time, but also requires that the members of any two bargaining
groups can not be directly connected. Having nodes between
groups regulate spectrum adjustment and prevents conflict
between groups. The necessity of this requirement can be
explained by the following example. Assume there are two
neighboring nodes A and B (two nodes in the conflict graph
connected with an edge) who are the members of two different
bargaining groups. Before assignment, A and B are not using
channel 0. After the bargaining, both A and B are granted
with channel 0 from their bargaining neighbors. However, as
A and B conflict with each other if using the same channel, the
bargaining produces interference conflict among nodes. The
detailed procedure to form isolated bargaining groups will be
introduced in Section III-B. An example of isolation between
bargaining groups is shown in Fig. 2.

B. Bargaining steps in detail

We design a local bargaining procedure based on the above
constraints, assuming a distributed architecture. We propose
a distributed, iterative grouping and bargaining process. We
assume that nodes periodically broadcast their current channel
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assignment and interference constraints to their neighbors.
Each node has three states: bargaining, disabled and enabled
(see Fig. 3). Only enabled nodes can perform bargaining. The
actual bargaining involves the following 4 steps, and repeats
until no further bargaining can improve system utility. Here
nodes refer to the vertices in the conflict graph, and two
“connected” nodes might be physically k (k > 1 hops away.
Information exchange between them is done through relay.

1.) Initialize Bargaining Request
In general, nodes affected by mobility events initialize bar-
gaining. Based on broadcasts of channel assignments and
interference constraints from neighbors, an enabled node
determines if bargaining with a neighbor will lead to an
improvement in system utility. If such neighbors exist, the
node broadcasts a bargain request to the neighbors along with
its current channel assignment and interference constraints.
Such broadcasts reduces communication overhead. As we will
show in Section IV-C, additional criterion exists to guide nodes
on generating bargaining requests.

2.) Acknowledge Bargaining Request
Neighbors who are enabled and willing to bargain reply
an ACK message with its current channel assignment and
interference constraints. We assume that nodes are willing to
collaborate to improve system utility, and accept requests that
improve system utility even if it might degrade their individual
channel assignments. Incentive systems to encourage such
collaboration will be investigated in a future paper. If a node
receives multiple concurrent requests from its neighbors, it
acknowledges the request that leads to the highest bargaining
gain as calculated based on information embedded in the
request.

3.) Bargain Group Formation
When the requester receives the replies, it selects the members
of the bargaining group, and broadcasts this information along
with the proposed modification of the channel assignment to
neighbors. Once the bargaining group is set, its members enter
bargaining state. They broadcast a DISABLE message with a
timer equal to the estimated duration of the bargain process to
neighbors not in the bargaining group. Note that the DISABLE
message can be embedded in the ACK messages to reduce
overhead. Nodes receiving the message enter disabled state
for the duration of the timer. This procedure prevents nodes
who are neighbors of existing bargaining group to participate
in any future bargaining before the timer expires. Following
this, all bargaining groups are isolated.

4.) Bargaining
Once all members acknowledge the changes to the channel as-
signment, each member updates its local channel assignment.
This is straightforward for one-to-one bargaining. For one-
buyer-multiple-seller bargaining, interactions among members
can be coordinated by the bargain requestor. After bargaining,
each member enters enabled state. Fig. 3 and 4 illustrate the
node state transition and messages during bargaining.

Once the local bargaining procedure is set, the specific

enabled bargainin

disabled

Send Request 
message; 

Receive and 
acknowledge 

request 

Finish bargaining; 
bargaining timer 

expires

Receive 
DISABLE 
message

Disable timer 
expires

Fig. 3. Node State and Transitions

1) Request

1)
 R

eq
ue

st

1) Request

1) 
Req

ue
st

2)AC
K

2)
AC

K

2)ACK

2)ACK

3) DISABLE

3) DISABLE

3) DISABLE

3)
 D

IS
AB

LE

3) DISABLE

3) D
ISABLE

3) 

DIS
ABLE

Fig. 4. Messages exchanged during bargaining.

bargaining strategy may be customized for different utility
functions. It is easy to show that for utilization based utility
(total user throughput), the optimization can be reduced to
solving M optimization problems for each color respectively.
On each color, the corresponding optimization problem is
exactly a Weighted Independent Set (WIS) problem [1]. WIS
problem is a special case of Weighted Set Packing problem,
and can be approximated by a local improvement heuristic
algorithm, generally called t − improvement [8], [1]. It is
straightforward to convert this algorithm to local bargaining
among neighbors. We omit the bargaining procedure due to
space constraints, and next focus on the local bargaining
strategy for the fairness-based utility.

IV. LOCAL BARGAINING TO IMPROVE FAIRNESS

In this section, we focus on the local bargaining strategy
optimizing for fairness. Based on its definition in (1), the
optimization aims to maximize the total logarithmic user
throughput, i.e. the product of user throughput. Therefore, the
global fairness utility increases if nodes with many assigned
channels “give” some channels to nodes with few assigned
channels. In this section, we start by describing basic one-
to-one bargaining where two unbalanced nodes exchange
channels to improve the local throughput product. We show
that such bargaining is limited by the number of bargainable
channels and thus not effective against the node starvation
problem. We then develop a special case of one-buyer-multi-
seller bargaining, referred to as Feed Poverty to eliminate node
starvation. We also derive a theoretical lower bound of user
throughput using local bargaining under a simplified network
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configuration.
We first define the following notations.

n: a node n in the conflict graph (0 ≤ n ≤ N − 1);
Nbr(n) = {v ∈ V |(n, v) ∈ E}: neighbors of n;
Nbr(X) =

⋃
n∈X Nbr(n) \ X: neighbors of node set X;

fA(n) = {0 ≤ m ≤ M − 1|am,n = 1}: the set of channels
assigned to node n under current assignment A.

A. One-to-One Fairness Bargaining

As we described, one-to-one bargaining allows two neigh-
boring nodes n1 and n2 to exchange channels to improve
system utility while complying with conflict constraints from
the other neighbors. For n1 and n2 to bargain, they need to first
obtain the channels that are bargainable to avoid disturbing
other neighbors, referred to as Cb(n1, n2):

Cb(n1, n2) = L(n1)∩L(n2)∩{{0..M−1}\
⋃

n∈Nbr(n1,n2)

fA(n)}.

Given Cb(n1, n2), we can define the one-to-one bargaining
regarding fairness as follows:

Definition 2: For an assignment AM×N , an One-to-One
Fairness Bargaining finds nodes n1 and n2, and their bargain-
ing channel set Cb(n1, n2), and modifies AM×N to A′

M×N

related to n1, n2 and channels Cb(n1, n2), such that

TPA′(n1) · TPA′(n2) > TPA(n1) · TPA(n2).

The One-to-One Fairness Bargaining increases the product
of the bargaining users while other nodes’ throughput values
remain unaffected. Hence, the system fairness increases with
each bargaining. The improvement between each pair of nodes
(n1, n2) can be calculated as G(n1, n2) = TPA′ (n1)TPA′ (n2)

TPA(n1)TPA(n2)
−

1. This is used in the bargaining process (in Section III) to
determine whether a bargaining can improve system utility.

Given (n1, n2), assigning channels to n1 and n2 to max-
imize their throughput product is a difficult task. This is
because node throughput depends on all channels (including
non-bargainable ones) assigned to a node, and the available
bandwidth on a channel differs between nodes. The problem
is shown to belong to the class of convex programming
problems [22]. When the number of bargainable channels
(|Cb(n1, n2)|) is small (e.g. |Cb(n1, n2)| < 10), exhaustive
search may be feasible. Otherwise we need to use approxima-
tions based on heuristics such as the one given in [22]: first
sort channels in Cb(n1, n2) (by channel bandwidth), then use
a two-band partition to determine the allocation.

The effectiveness of One-to-One bargaining is constrained
by the size of Cb(n1, n2). In general, due to heavy interference
constraints among neighboring nodes, Cb(.) could be very
small. Figure 5 illustrates an example where the conflict graph
is a chain topology consisting of three nodes A,B,C. Node B
is not assigned with any channel and the system utility is
zero. We refer to this as user starvation. Node a and b cannot
bargain due to the constraint from c (i.e. Cb(a, b) = ∅), while
node b and c also cannot bargain due to the constraint from
a (i.e. Cb(b, c) = ∅). Hence, the Fairness Bargaining is not
effective to eliminate user starvation.

A B C

1,2,3 1,2,3

Fig. 5. An example of Starvation

B. Feed Poverty Bargaining

We observe that user starvation in most cases is a result
of the lack of flexibility in bargaining. As for the example in
Figure 5, by allowing A and C to give up channel 1 at the same
time and feed it to B, we can remove the starvation at B. This is
an example of one-buyer-multi-seller bargaining. In this paper,
we propose a special one-buyer-multi-seller bargaining, called
Feed Poverty where if a node (buyer) has very poor channel
assignment, the neighboring nodes can collaborate together to
feed it with some channels.

Definition 3: For an assignment AM×N , a Feed Poverty
Bargaining is to find some node n0 and channel m0, modify
AM×N to A′

M×N , such that

A′
m,n =




1 : m = m0 and n = n0

0 : m = m0 and n ∈ Nbr(n0)
Am,n : otherwise

(intuitively, the assignment let some of n0’s neighbors give up
channel m0 and feed it to n0) and

GFP (n0) = (TPA′(n0)) ·
∏

n∈Nbr(n0)∧Am0,n=1

(TPA′(n))

− (TPA(n0)) ·
∏

n∈Nbr(n0)∧Am0,n=1

(TPA(n))

> 0.
This means the product-throughput of the users involved in
the bargaining is locally increasing, while the other users’
throughput are not affected. So generally the bargaining im-
proves system utility, except that, in case of starvation of other
users, the system utility remains −∞. A special case of Feed
Poverty is when Am0,n = 0 for all n ∈ Nbr(n0). This means
none of n0’s neighbors are using channel m0, and n0 simply
seizes it.

When there is no feasible One-to-One Fairness Bargaining,
i.e. |Cb| = ∅, the requestor initializes a Feed Poverty Bar-
gaining on all neighbors who acknowledge the request. The
requestor sequentially selects multiple channels to maximize
group utility.

C. BF-Optimal Assignment and Bound on User Throughput

We propose to combine one-to-one Fairness Bargaining and
Feed Poverty Bargaining into a Fairness Bargaining with Feed
Poverty (BF). Each node who wants to improve its spectrum
usage starts with negotiating one-to-one Fairness Bargaining
with its neighbors to improve system utility. If there is no
bargainable channels between it and any of its neighbors,
a starved node can broadcast a Feed-Poverty request to its
neighbors to initialize Feed Poverty Bargaining. Overall, a
channel assignment A is said to be BF-optimal if no further
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Fairness Bargaining with Feed Poverty can be performed on
it.

It is useful to derive a theoretical lower bound on each
user’s throughput for a BF-optimal assignment. However, it is
difficult to analyze the system performance when the channel
availability and bandwidth vary across channels and users. In
the following, we show that when channels are of uniform
bandwidth (W.L.O.G. bm,n = 1 for all m,n), we can derive the
theoretical lower bound on the total number of channels that
each user can get, which is equivalent to the user throughput.
This also shows an intuition of fairness enforced by Fairness
Bargaining-with-Feed-Poverty.

Theorem 1: Under a BF-optimal assignment A, for each
vertex n in the conflict graph G, 0 ≤ n ≤ N − 1 with degree
d(n) and channel availability list L(n), its spectrum usage
TP (n) has a lower bound, i.e.

TP (n) ≥
⌊ |L(n)|

d(n) + 1

⌋
= PL(n).

The proof is included in the appendix. The degree of a vertex
d(n) is defined as the number of edges it is associated with, a
measure of the number of channel sharers in the neighborhood
it has to compete with. Theorem 1 shows that the proposed
Fairness Bargaining with Feed Poverty guarantees a poverty
line PL(n) to each vertex n. The poverty line of a vertex,
i.e. the throughput a vertex deserves, scales inversely with the
number of sharers, which is also the spirit of some greedy
allocation algorithms [23], [18]. The poverty line also provides
a guideline in bargaining in real systems where a vertex
is entitled to request bargaining if its current throughput is
below its poverty line. We refer to this as the Poverty guided
bargaining.

It is easy to show that if channels are fully available at each
vertex, i.e. |L(n)| = M , and the maximum degree in the graph
∆ = max0≤n<N d(n), a BF-optimal assignment can eliminate
user starvation if the number of channels M ≥ ∆ + 1. This
matches the well-known conclusion in graph coloring that, the
chromatic number of a graph is at most ∆ + 1 [5]. It can be
shown that the derived poverty bound is also tight, for many
typical graph topologies, e.g. clique and ring topologies [4].

V. EXPERIMENTAL RESULTS

We conduct experimental simulations to quantify the per-
formance of bargaining-based spectrum allocation. We also
validate the proposed local bargaining algorithms against the
theoretical lower bounds. For simulations, we assume a noise-
less, mobile radio network. We simulate an ad-hoc network
by randomly placing a set of nodes on a 100 × 100 area. We
assume that each active node broadcasts data packets to some
of its neighbors. We further abstract the network into a Conflict
Graph where each vertex represents a transmitting node. Any
two nodes interfere with each other (i.e. connected in the
conflict graph) if they are within distance of 20. The actual
distance threshold depends on the choice of transmission
power and radio hardware. We simply use 20 as an illustrative
example. For simplicity, we assume that channels are equally

weighted and all the channels are available for each node,
i.e. ln,m = 1, bn,m = 1. Our simulations can be easily
extended to the cases with partial channel availability and
non-uniform channel bandwidth. In terms of traffic demands,
all transmitting nodes are assumed backlogged. We focus on
maximizing fairness, because bargaining under utility based
on spectrum utilization can be reduced to the classical local
search of weighted independent set problem, and has been
investigated extensively.

Under the simulation setting, for one-to-one fairness bar-
gaining, the optimal assignment of channels between two
nodes (n1, n2) can be derived easily to maximize the product
of the number of channels assigned to n1 and n2. For Feed
Poverty Bargaining, we select channel m0, i.e. feeding channel
to be the one that generates the minimum disturbance to the
neighbors,

m∗
0 = arg min

m0

∏
n∈Nbr(n0)∧Am0,n=1

TPA(n)
TPA′(n)

.

Topology dynamics are modeled by having nodes randomly
moving to new locations. We divide time into slots, and in
each time slot, p% of nodes move to a new randomly selected
location. The model captures the way mobility is manifested
in ad hoc networks without delving into complex protocols.
A moving node takes the original channel assignment but
disables the channels that conflict with its new neighbors. In
each time slot, after the topology change, nodes adjust their
channel usage.

We use two metrics to evaluate the performance.
• System utility: We consider fairness defined in (1). Note

that if there exists a user with no channel assigned, the
utility becomes −∞. For better representation, we modify

the utility to U(A) = 1/N

√∏N−1
n=0 TPA(n) and U(A) = 0

if there is any TPA(n) = 0.
• Communication overhead: We quantify algorithm com-

plexity as the communication overhead, i.e. total number
of messages exchanged among nodes, since transmission
and handling of messages will likely dominate compu-
tations for channel assignment. In both local bargaining
and graph coloring approaches, each iteration of spectrum
assignment or bargaining involves a 4-way handshake be-
tween neighbors, i.e. (request, acknowledgement, action,
acknowledgement).

We first compare the performance of local bargaining to
the graph coloring approaches that approximate to the solution
that maximizes system utility for a given conflict graph [23],
[18]. We also validate the impact on system performance when
nodes use the derived poverty line to guide its bargaining
decision. We then examine the effectiveness of using local
bargaining to optimize spectrum assignment for fixed topolo-
gies.

A. Comparison with Centralized Graph Coloring Approach

We now compare the proposed local bargaining to the
graph-coloring approach. We refer to these two as BARGAIN-
ING and GREEDY, respectively. We randomly deploy 40 links
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Fig. 6. Performance comparison of GREEDY and BARGAINING

with 30 channels in a given area and produce the correspond-
ing conflict graph. We use the graph coloring approach to
derive an initial spectrum assignment for the given conflict
graph. We simulate mobility events in the next 100 time slots,
one event per time slot where up to 6 nodes move to new
locations. After each event, we apply both local bargaining
and graph coloring approaches to derive the new spectrum
allocation.

Figure 6(a) illustrates the sorted fairness utility using both
approaches, and local bargaining performs nearly as good as
the graph coloring approach. The graph coloring approach
makes decisions with the knowledge of global topology, while
using local bargaining, each user makes decisions based on
only neighbor information. Figure 6(b) compares the commu-
nication overhead in each time slot. We observe that local
bargaining achieves similar performance while incurring much
lower complexity in terms of messages exchanged. This sig-
nificant overhead reduction allows quick adaptation to network
dynamics. In Figure 6(a), we also examine the performance
of local bargaining using only one-to-one fairness bargaining,
without Feed Poverty Bargaining. The results confirm that
Feed Poverty Bargaining is required to effectively eliminate
user starvation.

Next, we extend the simulation to allow p% of vertices
move to new randomly selected locations. In general, larger p
implies more disturbance to the conflict graph and thus more
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Fig. 7. Performance comparison of GREEDY and BARGAINING under
different user mobility.

vertices will perform bargaining to adapt their spectrum usage
to the new topology. Figure 7 illustrates the system utility and
algorithm overhead for local bargaining and graph coloring for
increasing values of p. The utility is geometrically averaged
over 100 time slots, and overhead is averaged over 100 time
slots. As before, local bargaining performs similarly to graph
coloring approach in system utility. The overhead of graph
coloring is not sensitive to the value of p as it mainly depends
on the size of the graph in number of vertices and channels.
The overhead complexity of local bargaining increases with
p as more vertices need to perform local bargaining. We ob-
serve that even under 100% mobility, local bargaining results
roughly 1/2 the overhead in terms of messages exchanged
compared to the graph coloring approach. Therefore, local
bargaining appears to be an attractive alternative to graph
coloring for optimizing spectrum allocation on a given network
topology.

In Figure 8, we fix the number of channels at 40 and
examine the impact of the number of vertices for p = 20%
mobility. Increasing the density of vertices in a fixed area
creates additional interference constraints and thus increases
average vertex degree in the conflict graph. Therefore, system
utility scales inversely with the number of vertices while the
algorithm complexity increases. As before, results show that
local bargaining compares favorably with graph coloring in
quality of allocation while incurring significantly less over-
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head.

B. Tightness of the Poverty bound

We now examine the appropriateness of the user poverty
bound derived in Theorem 1. Figure 9 illustrates the histogram
of the ratio of the actual user throughput and the poverty bound
assuming 40 vertices and 100 time slots. Results show that the
theoretical bound is valid and fairly tight. As we described,
nodes can use the poverty line to decide whether further local
bargaining is necessary. A vertex with an assignment below the
poverty line should bargain with additional neighbors to ac-
quire additional channels. In addition, if a vertex predicts that
a bargaining request from a neighbor will drop its assignment
below the poverty line, it can reject the request. In Figure 8, we
also compare the performance of Poverty guided bargaining
to the graph coloring and bargaining approaches. We show
that Poverty guided bargaining performs close to that of the
bargaining but with 10% less overhead, again demonstrating
the tightness of the poverty line bound.

C. Use local bargaining to optimize for a given topology

As stated before, it is possible to use local bargaining to
approximate the graph coloring approach and derive the spec-
trum allocation for a given topology. Local bargaining starts
from a random allocation and gradually improve the system
utility. Figure 10 compares the system utility and algorithm
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Fig. 10. Performance comparison of graph coloring, local bargaining and
random spectrum assignment for static environments.

complexity using graph coloring (GREEDY), local bargaining
(BARGAINING) and random assignment (RANDOM). User
starvation is common when using random assignment, result-
ing in many zero values for system utility. Local bargaining
can effectively eliminate user starvation and performs only
slightly worse compared to graph coloring approach. Fig-
ure 10(b) shows that local bargaining can significantly reduce
communication overhead.

VI. THEORETICAL DISTANCE TO SOCIAL OPTIMAL

In this section, we analyze the performance of the proposed
bargaining strategy, by comparing it to that of the socially
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optimal assignment. A socially optimal assignment is one
maximizes global system utility. We are interested in the ratio
of the utility of social optimum to that of our bargaining
optimum, often referred to as the price of anarchy (POA) as
defined in [14]. The analysis requires a number of case study
and illustrations. We only give a sketch here, and the details
will be included in a future paper [4].

It can be shown that the POA is unbounded in general,
when there is no restriction on channel bandwidth or number
of channels [4]. In the following we assume that channels are
of uniform bandwidth (W.L.O.G. bm,n = 1 for all m,n), and
the number of nodes are bounded. In this case the POA can
be bounded, based on the lower bound derived in Section III.

Theorem 2: For a topology with uniform channel availabil-
ity and channel bandwidth, i.e. bm,n = 1, lm,n = 1, and
M > ∆1, the price of anarchy for a BF-optimal channel
assignment is at most

MN · ∏〈u,v〉
(

dv

du+dv

) 1
du ·

(
du

du+dv

) 1
dv

∏N−1
n=0

⌊
M

dn+1

⌋ . (2)

The proof is in the appendix.

VII. RELATED WORK

Optimal conflict-free channel assignment satisfying a global
optimal objective is often NP-hard, even when global topology
information is available [6]. Centralized approximations are
widely used in single hop wireless networks such as cellular
networks. This can be easily extended to multi-hop wireless
networks by flooding connectivity and traffic requirements
across the network, and requiring all users to run a variant
of the centralized algorithm. However, this approach clearly
does not scale as networks become larger and more dynamic.

An alternative decentralized allocation, where users act
based on locally available information is much more attractive.
Both analytical framework and practical strategies have been
proposed. Analytical frameworks in [17], [12] address fairness
for single-hop flows, and derive an estimate of the rate at
each flow to achieve Max-Min fairness. However, there is no
guarantee that a feasible scheme exists to achieve the rate.

Practical strategies have been proposed for sharing a single
channel. Contention based schemes invoke a random access
protocol like ALOHA and CSMA, where users contend in time
to share a common channel [15], [12], [17]. While this scheme
provides fairness and utilization on a single channel system
probabilistically, its application to a multi-channel system
requires each user to know how many and which channel(s) to
access. Another approach, conflict free time slot scheduling,
provides guaranteed channel usage by reserving time slots
for each flow. Solutions in [20], [2], [19] assign exactly one
time slot to each flow. This approach can be used in multi-
channel systems if each user uses only one channel. Another
solution [21] allows users to use multiple slots/channels to
achieve Max-Min-fair, but does not consider interference from
neighbor transmissions.

1otherwise there may exist starvation and the ratio may be meaningless.

Multi-channel assignment strategies were developed mostly
for cellular networks. The work in [13] provides solutions to
assign frequency bands among base stations to minimize call
blocking probability for voice traffic. There is no notion of
fairness as the traffic determines the number of channels each
base station should use. In [9], the authors proposed a graph-
theoretic model and discussed the price of anarchy under
various topology conditions such as different channel numbers
and bargaining strategies. The main difference between [9] and
the proposed work is that the proposed model allows multi-
coloring of a vertex, while in [9] each vertex can only be
assigned with at most one color.

In [23], [18], the authors presented a generalized spectrum
allocation problem where interference constraint C is channel
dependent. The authors developed a set of greedy coloring
approach to optimize spectrum allocation for a given conflict
graph. We use the proposed approaches in [23], [18] as the
reference algorithm, i.e. GREEDY in this paper.

Cooperative/non-cooperative bargaining is also used in pre-
vious research to optimize channel allocation for cellular
networks. In [10] and [11], the authors proposed a set of
bargaining strategies for OFDMA based network, focusing on
one-to-one bargaining. In these cases, nodes are mutually inter-
fered, i.e. the corresponding conflict graph is fully-connected.
Forming bargaining group is to find any two users network
and let them exchange certain channels to improve system
performance. The main difference between these work and
the proposed work is that the proposed work provides solu-
tions for general conflict graphs where group setup needs to
consider local topology (i.e. isolated group and self-contained
channel adjustment). We propose a feed-poverty bargaining to
eliminate user starvation which can not addressed by one-to-
one bargaining. In addition, the proposed work derives a lower
bound for each node’s channel assignment that does not limit
to fully-connected topology.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present an adaptive and distributed ap-
proach to spectrum allocation in mobile ad-hoc networks.
We propose a local bargaining approach where users affected
by the mobility event self-organize into bargaining groups
and adapt their spectrum assignment to approximate a new
optimal assignment. The bargaining starts from the spectrum
assignment retained before the mobility event, and requires
significantly less computation and communication overhead.
We propose a Fairness Bargaining with Feed Poverty to
improve fairness in spectrum assignment. We also derive a
lower bound on the spectrum assignment that each node
can get from bargaining, referred to as the poverty line. It
reflects the level of fairness enforced by the bargaining, and
serves as a guideline to organize bargaining. Experimental
results show that the proposed bargaining approach performs
similarly as the topology-optimized approach but with much
less complexity. We also verify the correctness of the poverty
line and the effectiveness of the poverty guided bargaining.
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While we only proposed a specific bargaining strategy to
maximize fairness based system utility, the proposed bargain-
ing framework can be extended towards other utility functions
or optimization goal. We intend to examine this in a future
study. One of the biggest attractions of local bargaining is the
low complexity. We have conducted simulations to evaluate
algorithm complexity in terms of the number of bargaining
iterations, which is quite intuitive. We are currently working
on a theoretical analysis on the complexity of local bargaining.
In addition, the proposed bargaining framework assumes that
network nodes collaborate to improve system utility while in
real systems, nodes can be selfish so that a pricing based
bargaining or a rule based bargaining would be more practical.
We are currently investigating this issue.
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[9] HALLDÓRSSON, M. M., HALPERN, J. Y., LI, L. E., AND MIRROKNI,
V. S. On spectrum sharing games. In PODC ’04: Proceedings of
the twenty-third annual ACM symposium on Principles of distributed
computing (2004), ACM Press, pp. 107–114.

[10] HAN, Z., JI, Z., AND LIU, K. R. Low-complexity OFDMA channel
allocation with Nash bargaining solution fairness. In IEEE GLOBECOM
’04 (2004).

[11] HAN, Z., JI, Z., AND LIU, K. R. Power minimization for multi-cell
OFDM networks using distributed non-cooperative game approach. In
IEEE GLOBECOM ’04 (2004).

[12] HUANG, X., AND B.BENSAOU. On max-min fairness and scheduling
in wireless ad-hoc networks: analytical framework and implementation.
In Proc. of Mobihoc (2001), ACM.

[13] KATZELA, I., AND NAGHSHINEH, M. Channel assignment schems for
celluar mobile telecommunication systems. IEEE Personal Communi-
cations 3, 3 (June 1996), 10–31.

[14] KOUTSOUPIAS, E., AND PAPADIMITRIOU, C. Worst-case equilibria.
In Proc. 16th Annual Conf. Theoretical Aspects of Computer Science
(1999), vol. 1563 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 404–413.

[15] LUO, H., LU, S., AND BHARGHAVAN, V. A new model for packet
scheduling in multihop wireless networks. In Proc. ACM Mobicom
(August 2000).

[16] MCHENRY, M. Spectrum white space measurements. New America
Foundation Broadband Forum (June 2003).

[17] NANDAGOPAL, T., T.KIM, X.GAO, AND BHARGHAVAN, V. Achieving
mac layer fairness in wireless packet networks. In Proc. ACM Mobicom
(August 2000).

[18] PENG, C., ZHENG, H., AND ZHAO, B. Y. Utilization and fairness
in spectrum assignemnt for opportunistic spectrum access. Mobile
Networks and Applications (MONET) (2006). to appear.

[19] RAMANATHAN, S. A unified framework and algorithm for channel
assignment in wireless networks. Wireless Networks 5, 2 (March 1999),
81–94.

[20] RAMANATHAN, S., AND LLOYD, E. Scheduling algorithms for multi-
hop radio networks. In IEEE/ACM Trans. on Networking (April 1993),
vol. 1, pp. 166–177.

[21] SALONIDIS, T., AND TASSIULAS, L. Distributed on-line schedule
adapation for balanced slot allocation in wireless ad hoc networks. In
Proc. of IWQoS (2004).

[22] YU, W., AND CIOFFI, J. FDMA capacity of gaussian multi-access
channels with ISI. IEEE Trans. Commun. 50, 1 (Jan 2002), 102–111.

[23] ZHENG, H., AND PENG, C. Collaboration and fairness in opportunistic
spectrum access. In Proc. 40th annual IEEE International Conference
on Communications (June 2005).

APPENDIX

A. Proof of Theorem 1

The proof for Theorem 1 is complex. We start by proving the
following corollary, which is a special case of the Theorem. We then
provide a sketch of generalization to Theorem 1.

Corollary 1: Under a BF-optimal assignment A, for each vertex
in the conflict graph G, with degree d(n) and channel availability
list L(n) = {0, 1, · · · , M − 1}, the following holds:

TP (n) ≥
⌊

M

d(n) + 1

⌋
, 0 ≤ n ≤ N − 1. (3)

This is the case where each vertex has full channel availability.

A.1 Proof of Corollary 1
We first show the following lemma exists.
Lemma 1: Let BP×Q represent a P × Q binary matrix. Define

TP (n) =
∑P−1

m=0 Bm,n, for 0 ≤ n ≤ Q − 1; and Lc =∏
0≤i≤Q−1,Bc,i=1

TP (i)−1
TP (i)

. There exists 0 ≤ c ≤ P − 1, s.t.

Lc ≥ r − 1

r
, r = P/Q. (4)

Proof of Lemma 1.
Proof: The proof is trivial when 0 < r < 1 since the right side is
negative. Next, we assume r ≥ 1 and use an induction on Q to prove
the lemma.

When Q = 1, r = P , B becomes a r× 1 binary matrix. If for some
0 ≤ c ≤ r−1, Bc,0 = 0, then c satisfies (4). Otherwise, if Bc,0 = 1
∀0 ≤ c ≤ r − 1, then TP (0) = r, and ∀c, Lc = r−1

r
.

Now suppose the lemma holds for all k < Q (Q ≥ 2).
a) We first assume that there exists 0 ≤ n0 ≤ Q− 1, s.t. TP (n0) ≤
�r�, e.g. n0 = 0. Hence, ∀j, �r� ≤ j ≤ P − 1, Bj,0 = 0. Then,
B(�r�:P−1),(1:Q−1) is a binary matrix constructed by deleting the first
�r� rows and the first column of B. Its size is (P −�r�)× (Q− 1).
By induction hypothesis, there exists �r� ≤ c ≤ P − 1, s.t.

∏
1≤i≤Q−1,Bc,i=1

(
∑P−1

m=�r� Bm,i) − 1

(
∑P−1

m=�r� Bm,i)
≥ r′ − 1

r′
, (5)

where r′ = P−�r�
Q−1

≥ P−r
Q−1

= r. Following this, we can derive Lc as

Lc =
∏

0≤i≤Q−1,Bc,i=1

TP (i) − 1

TP (i)

=
∏

0≤i≤Q−1,Bc,i=1

(
∑P−1

m=0 Bm,i) − 1∑P−1
m=0 Bm,i

(Bc,0 = 0) =
∏

1≤i≤Q−1,Bc,i=1

(
∑P−1

m=0 Bm,i) − 1∑P−1
m=0 Bm,i

≥
∏

1≤i≤Q−1,Bc,i=1

(
∑P−1

m=�r� Bm,i) − 1∑P−1
m=�r� Bm,i

(by(5)) ≥ r′ − 1

r′
≥ r − 1

r
. (6)
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b) We now assume that ∀n, 0 ≤ n ≤ Q − 1, TP (n) > �r�. Since
TP (n) is an integer, TP (n) > r. Accordingly,

P−1∏
c=0

Lc =
∏

0≤c≤P−1

∏
0≤i≤Q−1,Bc,i=1

TP (i) − 1

TP (i)

=
∏

0≤i≤Q−1

∏
0≤c≤P−1,Bc,i=1

TP (i) − 1

TP (i)

=
∏

0≤i≤Q−1

(
TP (i) − 1

TP (i)

)TP (i)

(Lemma2) ≥
∏

0≤i≤Q−1

(
r − 1

r

)r

=

(
r − 1

r

)r·Q
=

(
r − 1

r

)P

. (7)

From the above, we show that
∏P−1

c=0 Lc ≥ ( r−1
r

)P . Because
Lc ≥ 0 for all 0 ≤ c ≤ P − 1, there must exist 0 ≤ c ≤ P − 1, s.t.
Lc ≥ r−1

r
.

The following lemma is also required to prove the corollary. Its
proof is straightforward and omitted due to space limit.

Lemma 2: Let f(x) = (1 − 1
x
)x. Then f(x) is monotonically

increasing in [1, +∞).

Proof of Corollary 1.
Proof: Define r = � M

d+1
�, and we have M = (d+1)·r+r0, r, r0 ∈

Z, 0 ≤ r0 ≤ d. If r = 0, the corollary is trivial. In the following we
assume r > 0. We will show that �n, TP (n) <

⌊
M

d+1

⌋
.

If ∃n, TP (n) <
⌊

M
d+1

⌋
, then

TP (n) ≤
⌊

M

d + 1

⌋
− 1 = r − 1. (8)

We assume that user n has d neighbors indexed {0, 1, · · · , d−1}.
We will use d to index user n. We assume that the channels assigned
to user n, fA(n)are indexed by {M − 1, M − 2, · · · , M −TP (n)}.
The assignment matrix can be illustrated by,

Index 0 · · · d-1 d · · ·

0 · · · · · · · · · 0 · · ·
...

...
. . .

... · · ·
...

M − TP (n) − 1 · · · · · · · · · 0 · · ·
M − TP (n) 0 · · · 0 1 · · ·

...
...

. . .
...

...
...

M-1 0 · · · 0 1 · · ·

Now A(0:M−TP (n)−1),(0:d−1) satisfies the conditions in Lemma
1, with P = M − TP (n) and Q = d. By Lemma 1, there exists
0 ≤ c ≤ M − TP (n) − 1, s.t.

Lc =
∏

0≤i≤d−1,Ac,i=1

(
∑M−TP (n)−1

m=0 Am,i) − 1

(
∑M−TP (n)−1

m=0 Am,i)
≥ r′ − 1

r′
. (9)

Here

r′ =
M − TP (n)

d
≥ M − (r − 1)

d

=
((d + 1) · r + r0) − (r − 1)

d
> r. (10)

Since Am,i = 0 for M−TP (n) ≤ m ≤ M−1 and 0 ≤ i ≤ d−1, it
is easy to show that

∑M−TP (n)−1
m=0 Am,i =

∑M−1
m=0 Am,i = TP (i),

for 0 ≤ i ≤ d − 1.

Based on (9), we can derive the following,

∏
0≤i≤d−1,Ac,i=1

TP (i) − 1

TP (i)
≥ r′ − 1

r′
>

r − 1

r
. (11)

Now there are two cases:
• TP (n) = 0. Then

(TP (n) + 1) ·
∏

i∈Nbr(n)∧Ac,i=1

(TP (i) − 1)

> 0 (by(11))

= (TP (n)) ·
∏

i∈Nbr(n)∧Ac,i=1

(TP (i)). (12)

• TP (n) > 0. Then

(TP (n) + 1) · ∏i∈Nbr(n)∧Ac,i=1(TP (i) − 1)

(TP (n)) · ∏i∈Nbr(n)∧Ac,i=1(TP (i))

=
TP (n) + 1

TP (n)
·

 ∏

0≤i≤d−1,Ac,i=1

TP (i) − 1

TP (i)




(by(11)) >
TP (n) + 1

TP (n)
· r − 1

r

(by(8)) ≥ (r − 1) + 1

r − 1
· r − 1

r
= 1. (13)

(12) and (13) show that we can apply Feed Poverty on assignment
A, by feeding channel c to node n. This contradicts with the
assumption that assignment A is BF-optimal.

A.2 Generalize to Theorem 1.
We can prove Theorem 1 using a similar argument as Corollary 1.
Suppose there is a node n who violates the inequality, then there
must exist a channel c ∈ L(n), s.t. when c is feeded to n and
removed from its neighbors, the system utility increases. This is done
by considering the sub assignment matrix AL(n)×(0:N−1) instead of
A(0:M−1)×(0:N−1) in the proof [4].

B. Proof of Theorem 2
The proof can be reduced to deriving a upper bound of social
optimum.
Proof: Based on the observation that for each pair 〈u, v〉 of
neighboring nodes, TP (u) + TP (v) ≤ M . We have

TP (u)
1

du · TP (v)
1

dv

≤
(

dv

du + dv
· M

) 1
du ·

(
du

du + dv
· M

) 1
dv

.

Thus,

N−1∏
n=0

TP (n) =
∏
〈u,v〉

TP (u)
1

du · TP (v)
1

dv

≤
∏
〈u,v〉

(
dv

du + dv
· M

) 1
du ·

(
du

du + dv
· M

) 1
dv

= MN ·
∏
〈u,v〉

(
dv

du + dv

) 1
du ·

(
du

du + dv

) 1
dv

. (14)

Therefore, based on Theorem 1 and (14) , the price of anarchy is
at most

MN · ∏〈u,v〉
(

dv
du+dv

) 1
du ·

(
du

du+dv

) 1
dv

∏N−1
n=0

⌊
M

dn+1

⌋ . (15)
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